IONIC AND METALLIC BONDING

SECTION 7.1 IONS (pages 187–193)

This section explains how to use the periodic table to infer the number of valence electrons in an atom and draw its electron dot structure. It also describes the formation of cations from metals and anions from nonmetals.

Valence Electrons (pages 187–188)

- 1. What are valence electrons? _____
- 2. The valence electrons largely determine the ______ of an element and are usually the only electrons used in ______.
- **3.** Is the following sentence true or false? The group number of an element in the periodic table is related to the number of valence electrons it has.
- 4. What is an electron dot structure? ______
- **5.** Draw the electron dot structure of each of the following atoms.

a. argon

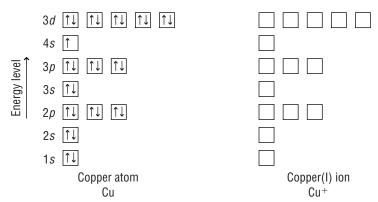
b. calcium _____

c. iodine

The Octet Rule (page 188)

6. What is the octet rule? _____

7. Metallic atoms tend to lose their valence electrons to produce a(n) ______, or a positively charged ion. Most nonmetallic atoms achieve a complete octet by gaining or ______ electrons.


CHAPTER 7, Ionic and Metallic Bonding (continued)

Formation of Cations (pages 188–190)

8. Write the electron configurations for these metals and circle the electrons lost when each metal forms a cation.

9. argon	a. $1s^2$
10. helium	b. $1s^2 2s^2 2p^6$
11. neon	c. $1s^2 2s^2 2p^6 3s^2 3p^6$
12. krypton	d. $1s^22s^22p^63s^23p^63d^{10}4s^24p^6$

- **13.** What is the electron configuration called that has 18 electrons in the outer energy level and all of the orbitals filled?
- **14.** Write the electron configuration for zinc.
- **15.** Fill in the electron configuration diagram for the copper(I) ion.

Formation of Anions (pages 191–192)

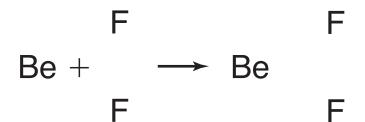
16. Atoms of most nonmetallic elements achieve noble-gas electron

configurations by gaining electrons to become ______, or negatively charged ions.

17. What property of nonmetallic elements makes them more likely to gain electrons than lose electrons?

- Is the following sentence true or false? Elements of the halogen family lose one electron to become halide ions.
- 19. How many electrons will each element gain in forming an ion?
 - a. nitrogen _____
 - **b.** oxygen
 - c. sulfur
 - d. bromine _____
- **20.** Write the symbol and electron configuration for each ion from Question 19, and name the noble gas with the same configuration.

a.	nitride	
b.	oxide	


- c. sulfide _____
- d. bromide _____

SECTION 7.2 IONIC BONDS AND IONIC COMPOUNDS (pages 194–199)

This section lists the characteristics of an ionic bond. It also describes the use of these characteristics to explain the electrical conductivity of ionic compounds when melted and when in aqueous solutions.

Formation of Ionic Compounds (pages 194–195)

- 1. What is an ionic bond? _____
- 2. In an ionic compound, the charges of the ______ and _____ must balance to produce an electrically ______ substance.
- **3.** Complete the electron dot structures below to show how beryllium fluoride (BeF₂) is formed. Use figure on page 194 as a model.

Name

CHAPTER 7, Ionic and Metallic Bonding (continued) 4. Why do beryllium and fluorine combine in a 1 : 2 ratio? **5.** A chemical formula shows the types and of atoms in the smallest representative unit of a substance. **6.** List the numbers and types of atoms represented by these chemical formulas. **a.** Fe₂O₃_____ **b.** KMnO₄ **c.** CH₃_____ **d.** NH₄NO₃ 7. What is a formula unit? **8.** Explain why the ratio of magnesium ions to chloride ions in $MgCl_2$ is 1 : 2. 9. Describe the structure of ionic compounds. Properties of Ionic Compounds (pages 196–198) 10. Most ionic compounds are ______ at room temperature. 11. Is the following sentence true or false? Ionic compounds generally have low melting points. 12. What does a coordination number tell you? **13.** What is the coordination number of the ions in a crystal of NaCl?

- 14. Circle the letter of each statement that is true about ionic compounds.
 - **a.** When dissolved in water, ionic compounds can conduct electricity.
 - **b.** When melted, ionic compounds do not conduct electricity.
 - c. Ionic compounds have very unstable structures.
 - d. Ionic compounds are electrically neutral.

Reading Skill Practice

By looking carefully at photographs and drawings in textbooks, you can better understand what you have read. Look carefully at Figure 7.9 on page 197. What important idea does this drawing communicate? Do your work on a separate sheet of paper.

SECTION 7.3 BONDING IN METALS (pages 201–203)

This section uses the theory of metallic bonds to explain the physical properties of metals. It also describes the arrangements of atoms in some common metallic crystal structures.

Metallic Bonds and Metallic Properties (pages 201-202)

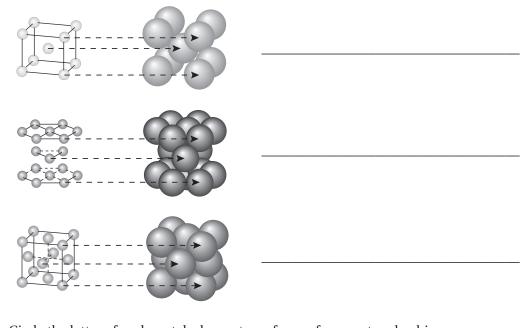
1. Is the following sentence true or false? Metals are made up of cations, not

neutral atoms.

2. What are metallic bonds? _____

3. Name three properties of metals that can be explained by metallic bonding.

a.	
b.	


- c. _____
- 4. What happens to an ionic crystal when a force is applied to it?

Crystalline Structure of Metals (page 202)

5. Metal atoms in crystals are arranged into very ______ and orderly patterns.

CHAPTER 7, Ionic and Metallic Bonding (continued)

6. Label each of the following arrangements of atoms with the correct name.

- **7.** Circle the letter of each metal whose atoms form a face-centered cubic pattern.
 - **a.** magnesium **c.** sodium
- **b.** copper **d.** aluminum

Match the arrangement with the number of neighbors each atom in the arrangement has.

- **8.** body-centered cubic **a.** 12
- **9.** face-centered cubic **b.** 8
- **10.** hexagonal close-packed

Alloys (page 203)

11. A mixture of two or more elements, at least one of which is a metal, is called

a(n) _____.

- **12.** Is the following sentence true or false? Pure metals are usually harder and more durable than alloys. ______
- 13. The most common use of nonferrous alloys is in ______.

Name	Date	Class		
14. What four prop	perties make steel an important alloy?			
a				
b				
с				
d				
15. What are the c	What are the component elements for the following alloys?			
a. sterling silve	er			
b. brass				
c. surgical stee	el			
d. cast iron				
16	alloys have smaller atoms that fit in	nto the spaces between		
larger atoms	alloys have componen	nt atoms that are		
roughly equal i	in size.			

CHAPTER 7, Ionic and Metallic Bonding (continued)

GUIDED PRACTICE PROBLEM

GUIDED PRACTICE PROBLEM 12 (page 196)

12. Use electron dot structures to determine formulas of the ionic compounds formed when **a.** potassium reacts with iodine. **b.** aluminum reacts with oxygen.

a. potassium reacts with iodine.

Analyze

Step 1. Is one of the elements a metal? If so, which one?

Step 2. Metal atoms ______ their valence electrons when forming ionic compounds.

Nonmetal atoms ______ electrons when forming ionic compounds.

Solve

Step 3. Write the electron dot structures for the two atoms

potassium	iodine				
Step 4. The metal atom,	, must lose	electron(s) in order			
to achieve an octet in the next-lowest energy level. The nonmetal atom,,					
must gain electron(s) in order to achieve a complete octet.					
Step 5. Using electron dot structures, write an equation that shows the formation of the ionic compound from the two elements. Make sure that the electrons lost equals the electrons gained.					

Step 6. The chemical formula for the ionic compound formed is ______.

Date _____

b. aluminum reacts with oxygen.

Analyze

Step 1. Is one of the elements a metal? If so, which one?

Step 2. Metal atoms ______ their valence electrons when forming ionic compounds. Nonmetal atoms ______ electrons when forming ionic compounds.

Solve

Step 3. Write the electron dot structures for the two atoms

 aluminum
 oxygen

 Step 4. The metal atom, ______, must lose ______ electron(s) in order

 to achieve an octet in the next-lowest energy level. The nonmetal atom, ______, must gain ______ electron(s) in order to achieve a complete octet.

Step 5. Using electron dot structures, write an equation that shows the formation of the ionic compound from the two elements. Make sure that the electrons lost equals the electrons gained.

Step 6. The chemical formula for the ionic compound formed is ______.