Reviewing Content

57. Lissa: inaccurate and imprecise Lamont: accurate and precise Leigh Anne: inaccurate and precise
58. a. infinite
b. 4
c. infinite
d. infinite
59. a. 98.5 L
b. 0.000763 cg
c. 57.0 m
d. $12.2^{\circ} \mathrm{C}$
60. a. 43 g
b. 225.8 L
c. 92.0 kg
d. $32.4 \mathrm{~m}^{3}$
61. (59) a. $9.85 \times 10^{1} \mathrm{~L}$
b. $\quad 7.63 \times 10^{-4} \mathrm{cg}$
c. $5.70 \times 10^{1} \mathrm{~m}$
d. $1.22 \times 10^{10} \mathrm{C}$
(60) a. 4.3×10^{1} g
b. $2.258 \times 10^{2} \mathrm{~L}$
c. $9.20 \times 10^{1} \mathrm{~kg}$
d. $3.24 \times 10^{1} \mathrm{~m}^{3}$
62. The error is the difference between the experimental value and the accepted. The percent error is the error divided by the accepted value multiplied by 100 .
63. a. second
b. meter
c. kelvin
d. kilogram
64. $\mathrm{km}, \mathrm{m}, \mathrm{dm}, \mathrm{cm}, \mathrm{mm}, \mathrm{mm}, \mathrm{nm}, \mathrm{pm}$; $1 \mathrm{~km}=10^{3} \mathrm{~m}, 1 \mathrm{dm}=10^{-1} \mathrm{~m}$, $1 \mathrm{~cm}=10^{-2} \mathrm{~m} .1 \mathrm{~mm}=10^{-3} \mathrm{~m}$, $1 \mathrm{~mm}=10^{-6} \mathrm{~m}, 1 \mathrm{~nm}=10^{-9} \mathrm{~m}$, $1 \mathrm{pm}=10^{-12} \mathrm{~m}$
65. a. 2.4 mm
b. 13.95 cm
c. 27.50 cm
66. 1235 K
67. conversion factor
68. They must equal one another.
69. The unit of the conversion factor in the denominator must be identical to the unit in the given measurement or the previous conversion factor.
70. a. 1.57 s
b. $4.27 \times 10^{4} \mathrm{~mL}$
c. $2.61 \times 10^{-4} \mathrm{~mm}$
d. $6.5 \times 10^{2} \mathrm{dm}$
e. $6.42 \times 10^{-3} \mathrm{~kg}$
f. $8.25 \times 10^{9} \mathrm{ng}$
71. a. $7.3 \mathrm{~mL} / \mathrm{s}$
b. $78.6 \mathrm{mg} / \mathrm{mm}^{2}$
c. $1.54 \mathrm{~g} / \mathrm{cm}^{3}$
72. $10^{6} \mathrm{~mL}$
73. $2.83 \times 10^{2} \mathrm{mg}, 0.283 \mathrm{~g}, 2.83 \times 10^{-4} \mathrm{~kg} ; 6.6$ g, $6.6 \times 10^{2} \mathrm{cg}, 6.6 \times 10^{-3} \mathrm{~kg} ;$
$2.8 \times 10^{-1} \mathrm{mg}, 2.8 \times 10^{-2} \mathrm{cg}, 2.8 \times 10^{-7} \mathrm{~kg}$
74. density $=$ mass $/$ volume
75. Yes, neither mass nor volume of a solid or liquid changes appreciably with location.
76. No, the density of the metal bar is 12 $\mathrm{g} / \mathrm{cm}^{3}$, but density of gold is $19 \mathrm{~g} / \mathrm{cm}^{3}$.
77. The carbon dioxide-filled balloon would sink. The neon and hydrogen-filled balloons would rise, the hydrogen at a much faster rate.

Understanding Concepts

78. Improper calibration or improper use of the measuring device.
79. e, d, c, f, a, b
80. a. accurate and precise
b. inaccurate and precise
c. inaccurate and imprecise
81. ${ }^{\circ} \mathrm{F}=1.8^{\circ} \mathrm{C}+32$
82. germanium
83. $1 \mathrm{~g} / 10^{2} \mathrm{cg}, 10^{2} \mathrm{cg} / 1 \mathrm{~g}, 1 \mathrm{~g} / 10^{3} \mathrm{mg}, 10^{3}$ $\mathrm{mg} / 1 \mathrm{~g}, 10^{2} \mathrm{cg} / 10^{3} \mathrm{mg}$,
$10^{3} \mathrm{mg} / 10^{2} \mathrm{cg}$
84. 81.3 kg
85. $0.69-0.789 \mathrm{~g} / \mathrm{cm}^{3}$
86. $4.20 \times 10^{4} \mathrm{~cm}^{3}$
87. $0.804 \mathrm{~g} / \mathrm{cm}^{3}$
88. 3.6 min lost
89. $0.92 \mathrm{~kg} / \mathrm{L}$
90. a. $\mathrm{C}_{2}=-90^{\circ} \mathrm{C}, \mathrm{C}_{4}=0^{\circ} \mathrm{C}, \mathrm{C}_{6}=70^{\circ} \mathrm{C}$, $\mathrm{C}_{8}=125^{\circ} \mathrm{C}$
b. C_{1} through C_{4}
c. three
d. From C_{1} through C_{9}, the increase is approximately $39^{\circ} \mathrm{C} /$ additional carbon. Over the range C_{3} through C_{9}, the increase is approximately $32^{\circ} \mathrm{C} /$ additional carbon.
91. 8.3 min
$\mathbf{9 2 . 7 3} \mathrm{g}$
92. $5.52 \mathrm{~kg} / \mathrm{dm}^{3}$
93. 24.0 kg of water

Critical Thinking

95. Yes, the mass of an object is constant. The weight of an object varies with location.
96. 16.3 g
97. $31.1 \mathrm{~m} / \mathrm{s}$
98. You do not change your estimate. Counting the extra 15 ducks would suggest greater precision than was used in the estimate.
99. Answers will vary. Lakes would freeze solid from the bottom up; aquatic life would be destroyed; possible climate changes.
100. Gasoline is a mixtures and has a variable composition.
101. density of sulfur $=2.1 \mathrm{~g} / \mathrm{cm}^{3}$;

102. a. The oxygen-filled balloon will sink; the nitrogen-filled balloon will rise.
b. nitrogen; The "weighted" average density of air is closer to the density of nitrogen.

Concept Challenge

103. Volume of iron $=45.1 \mathrm{~cm}^{3}$

Mass of lead $=514 \mathrm{~g} \mathrm{~Pb}$
104. 8.0 g Sr
105. $1.8 \times 10^{3} \mathrm{~kg}$
106. a. 85 g
b. $1.3 \mathrm{~g} / \mathrm{mL}$
107. 1.79 mL
108. a. corn oil on top of water on top of mercury
b. The density of sugar is greater than the density of water and less than the density of mercury; it floats between the layers of mercury and water.
c. The sugar cube will dissolve in the water over time.

